PRIOn Logo

CVE-2024-39488 Design/Logic Flaw

Routine
Remediate Within 6 Months

CVE Information

Original CVE data

Published:
Updated:

In the Linux kernel, the following vulnerability has been resolved: arm64: asm-bug: Add .align 2 to the end of __BUG_ENTRY When CONFIG_DEBUG_BUGVERBOSE=n, we fail to add necessary padding bytes to bug_table entries, and as a result the last entry in a bug table will be ignored, potentially leading to an unexpected panic(). All prior entries in the table will be handled correctly. The arm64 ABI requires that struct fields of up to 8 bytes are naturally-aligned, with padding added within a struct such that struct are suitably aligned within arrays. When CONFIG_DEBUG_BUGVERPOSE=y, the layout of a bug_entry is: struct bug_entry { signed int bug_addr_disp; // 4 bytes signed int file_disp; // 4 bytes unsigned short line; // 2 bytes unsigned short flags; // 2 bytes } ... with 12 bytes total, requiring 4-byte alignment. When CONFIG_DEBUG_BUGVERBOSE=n, the layout of a bug_entry is: struct bug_entry { signed int bug_addr_disp; // 4 bytes unsigned short flags; // 2 bytes < implicit padding > // 2 bytes } ... with 8 bytes total, with 6 bytes of data and 2 bytes of trailing padding, requiring 4-byte alginment. When we create a bug_entry in assembly, we align the start of the entry to 4 bytes, which implicitly handles padding for any prior entries. However, we do not align the end of the entry, and so when CONFIG_DEBUG_BUGVERBOSE=n, the final entry lacks the trailing padding bytes. For the main kernel image this is not a problem as find_bug() doesn't depend on the trailing padding bytes when searching for entries: for (bug = __start___bug_table; bug < __stop___bug_table; ++bug) if (bugaddr == bug_addr(bug)) return bug; However for modules, module_bug_finalize() depends on the trailing bytes when calculating the number of entries: mod->num_bugs = sechdrs[i].sh_size / sizeof(struct bug_entry); ... and as the last bug_entry lacks the necessary padding bytes, this entry will not be counted, e.g. in the case of a single entry: sechdrs[i].sh_size == 6 sizeof(struct bug_entry) == 8; sechdrs[i].sh_size / sizeof(struct bug_entry) == 0; Consequently module_find_bug() will miss the last bug_entry when it does: for (i = 0; i < mod->num_bugs; ++i, ++bug) if (bugaddr == bug_addr(bug)) goto out; ... which can lead to a kenrel panic due to an unhandled bug. This can be demonstrated with the following module: static int __init buginit(void) { WARN(1, "hello\n"); return 0; } static void __exit bugexit(void) { } module_init(buginit); module_exit(bugexit); MODULE_LICENSE("GPL"); ... which will trigger a kernel panic when loaded: ------------[ cut here ]------------ hello Unexpected kernel BRK exception at EL1 Internal error: BRK handler: 00000000f2000800 [#1] PREEMPT SMP Modules linked in: hello(O+) CPU: 0 PID: 50 Comm: insmod Tainted: G O 6.9.1 #8 Hardware name: linux,dummy-virt (DT) pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : buginit+0x18/0x1000 [hello] lr : buginit+0x18/0x1000 [hello] sp : ffff800080533ae0 x29: ffff800080533ae0 x28: 0000000000000000 x27: 0000000000000000 x26: ffffaba8c4e70510 x25: ffff800080533c30 x24: ffffaba8c4a28a58 x23: 0000000000000000 x22: 0000000000000000 x21: ffff3947c0eab3c0 x20: ffffaba8c4e3f000 x19: ffffaba846464000 x18: 0000000000000006 x17: 0000000000000000 x16: ffffaba8c2492834 x15: 0720072007200720 x14: 0720072007200720 x13: ffffaba8c49b27c8 x12: 0000000000000312 x11: 0000000000000106 x10: ffffaba8c4a0a7c8 x9 : ffffaba8c49b27c8 x8 : 00000000ffffefff x7 : ffffaba8c4a0a7c8 x6 : 80000000fffff000 x5 : 0000000000000107 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff3947c0eab3c0 Call trace: buginit+0x18/0x1000 [hello] do_one_initcall+0x80/0x1c8 do_init_module+0x60/0x218 load_module+0x1ba4/0x1d70 __do_sys_init_module+0x198/0x1d0 __arm64_sys_init_module+0x1c/0x28 invoke_syscall+0x48/0x114 el0_svc ---truncated---

CWE:
CVSS v2-
CVSS v3-
References
https://git.kernel.org/stable/c/f221bd58db0f6ca087ac0392284f6bce21f4f8ea
https://git.kernel.org/stable/c/22469a0335a1a1a690349b58bcb55822457df81e
https://git.kernel.org/stable/c/461a760d578b2b2c2faac3040b6b7c77baf128f8
https://git.kernel.org/stable/c/c1929c041a262a4a27265db8dce3619c92aa678c
https://git.kernel.org/stable/c/3fd487ffaa697ddb05af78a75aaaddabe71c52b0
https://git.kernel.org/stable/c/9f2ad88f9b349554f64e4037ec185c84d7dd9c7d
https://git.kernel.org/stable/c/c27a2f7668e215c1ebbccd96fab27a220a93f1f7
https://git.kernel.org/stable/c/ffbf4fb9b5c12ff878a10ea17997147ea4ebea6f
Affected Vendors

Basic Analysis

Common vulnerability metrics

Vulnerabilty type as detected by PRIOnengine

Design/Logic Flaw

CVSS Scores as calculated by PRIOnengine
CVSS v27.8
AV:N/AC:L/AU:N/C:N/I:N/A:C
CVSS v37.1
AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H
MITRE CWE Top 25

-

Exploits

No exploit code is reported to exist.

Active Exploitation

Vulnerability is not in CISA's Known Exploited Vulnerabilities (KEV) catalog. See the KEV Catalog

Social Network Activity

-

Threat Actor Activity

No sightings of the vulnerability within threat reports.

Cybersecurity Frameworks

How the vulnerability maps against various cybersecurity frameworks

-

Compliance Impact

How the submited vulnerability affects compliance

-

Web Application Security Frameworks

Applicable if the issue likely affects a web application

-